<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/plusone.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar.g?targetBlogID\x3d14085554\x26blogName\x3dAP+Calculus+AB\x26publishMode\x3dPUBLISH_MODE_BLOGSPOT\x26navbarType\x3dBLUE\x26layoutType\x3dCLASSIC\x26searchRoot\x3dhttp://apcalc.blogspot.com/search\x26blogLocale\x3den_US\x26v\x3d2\x26homepageUrl\x3dhttp://apcalc.blogspot.com/\x26vt\x3d-7891817501038621673', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>

# AP Calculus AB

An interactive log for students and parents in my AP Calculus class. This ongoing dialogue is as rich as YOU make it. Visit often and post your comments freely.

## Monday, November 28, 2005

### Derivative Acrostics

Kudos to Mrs. Armstrong for turning me on to the idea of acrostics in math.

Blogging Prompt
Your task is to create an acrostic "poem" that demonstrates an understanding of calculus related to any one of these concepts:

DERIVATIVE
POWER RULE
PRODUCT
QUOTIENT
CHAIN RULE
TANGENT LINE
NEWTON'S METHOD

As an extra challenge (worth an additional bonus mark) try to make a Double Acrostic, that is, each line should begin and end with a letter of the word you are working with.

Remember, this is a bit of a race. Your answers have to be posted to the blog in the comments to this post. If someone has already used a word or phrase in their acrostic you cannot use the same word or phrase. i.e. It gets harder to do the longer you wait. ;-)

Here is an example of an acrostic that Mrs. Armstrong wrote:

Always in 2 dimensions
Region between the boundaries
Entire surface is calculated