<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/plusone.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar.g?targetBlogID\x3d14085554\x26blogName\x3dAP+Calculus+AB\x26publishMode\x3dPUBLISH_MODE_BLOGSPOT\x26navbarType\x3dBLUE\x26layoutType\x3dCLASSIC\x26searchRoot\x3dhttps://apcalc.blogspot.com/search\x26blogLocale\x3den_US\x26v\x3d2\x26homepageUrl\x3dhttp://apcalc.blogspot.com/\x26vt\x3d2092189443322278047', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>

AP Calculus AB

An interactive log for students and parents in my AP Calculus class. This ongoing dialogue is as rich as YOU make it. Visit often and post your comments freely.

Friday, November 11, 2005

Product Role & Quotient Role

Product Role and Quotient Role ~^.^~

In today’s class, we learned another way of how to get derivative function.
We used the definition of derivative and a rectangle diagram proved the product role.
Product role:
If the function is F(x) =f(x)g(x)
Then the derivative of the function F’(x)= f(x)g'(x)+f'(x)g(x)

Example *+_+* : H(x) =X^2X^3
According to product role:
H’(x) =(x) ^2(3x^2) + 2x(x^3)
H’(x) =3x^4+2x^4
H’(x) =5x^4

Quotient Role:
If the function is F(x)=f(x)/g(x)
Then the derivative of the function F'(x)=( g(x)f'(x)-f(x)g'(x) )/( g(x) )^2

And next Scrible is Sarah

Français/French Deutsch/German Italiano/Italian Português/Portuguese Español/Spanish 日本語/Japanese 한국어/Korean 中文(简体)/Chinese Simplified Nederlands/Dutch


Post a Comment

<< Home